
www.manaraa.com

www.manaraa.com

A FUZZY LOGIC APPROACH TO LOAD BALANCING IN AUGMENTED REALITY

DISTRIBUTED ENVIRONMENTS

APPROVED BY SUPERVISING COMMITTEE:

__

David Akopian, Ph.D., Chair

__

Mo Jamshidi, Ph.D., Co-Chair

__

Wei-Ming Lin, Ph.D.

__

Sevki Erdogan, Ph.D.

Accepted: ___

Dean, Graduate School

www.manaraa.com

DEDICATION

This dissertation is dedicated to my family.

www.manaraa.com

www.manaraa.com

A FUZZY LOGIC APPROACH TO LOAD BALANCING IN AUGMENTED REALITY

DISTRIBUTED ENVIRONMENTS

by

ALEKSANDR V. PANCHUL, M.S.

DISSERTATION

Presented to the Graduate Faculty of

The University of Texas at San Antonio

In partial Fulfillment

Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

College of Engineering

Department of Electrical and Computer Engineering

December 2010

www.manaraa.com

UMI Number: 3433221

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3433221

Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

iii

ACKNOWLEDGEMENTS

Quantitative analysis in this thesis would not exist without Computer Engineering

Framework (CEF) which was influenced by many people. To avoid forgetting anyone, I will

leave them largely unnamed. I would like to express my deepest appreciation to all supporters of

CEF projects, people who donated their computers and hardware, and whose motivation helped

me to stay focused on my work and to see the bigger picture.

I would like to thank Dr. David Akopian and Dr. Mo Jamshidi, my supervising

professors, whose mentoring helped me to survive in academic world. I am grateful to UTSA

Department of Electrical and Computer Engineering for the given opportunities. I also would

like to express my genuine gratitude to the committee for their constructive criticism and useful

feedback.

I would like to acknowledge Polley-Kane and Associates, Inc. for the financial support of

the supercomputer system implementation, especially in connection with the environmental

research.

It is with great pleasure I would like to acknowledge Dr.Vladimir Petrukhin, professor at

Moscow Institute of Physics and Technology, Russia, Kiev Institute of Cybernetics, Ukraine, and

International entrepreneur. He was my mentor during undergraduate years; he convinced me to

pursue formal education and helped to stay on track.

Last but not least, I would like to thank my wife, Sarah Kane Panchul for occasional

proof-reading and for tolerating fifty computer servers and equipment in our small apartment.

December 2010

www.manaraa.com

iv

A FUZZY LOGIC APPROACH TO LOAD BALANCING IN AUGMENTED REALITY

DISTRIBUTED ENVIRONMENTS

Aleksandr Panchul, Ph.D.
The University of Texas at San Antonio, 2010

Supervising Professors: David Akopian, Ph.D. and Mo Jamshidi, Ph.D.

By the end of the 20th century the Gordon Moor's Law could not be fulfilled by the

industry in its straight form. His widely known estimation predicted in 1965 that the number of

transistors in the minimum-cost CPU would double every year. The fact of physics, however, is

that the feature size of a microchip cannot become zero. He adjusted his prediction shortly after

by claiming every two year cycle, and later CPU manufacturers circumvented the limitations by

starting putting several processing units into one chip. Other ways to increase performance

include putting multiple CPUs on one motherboard, multiple printed circuit boards in one

computer, or a number of separate computers in a distributed cluster.

A distributed system is the most promising way because it can interconnect computers

with different hardware, lowering the costs of maintenance and upgrade. Scalability is very

important for successful operations. For the multi-processor systems load balancing is capable of

generating additional increase in performance, hence lowering overall cost of equipment and

software. With the growing scale of distributed systems load balancing becomes an essential

issue. The virtualization of resources including CPU time, network access and data storage

becomes ubiquitous. Virtual systems are a multi-billion dollar industry and a very important

technology for military, air-space applications, and consumer service providers. Cloud

computing is becoming a strong niche for IT companies of all sizes.

www.manaraa.com

v

This dissertation proposes, among other things, an artificial intelligence approach for load

balancing, and its analysis for distributed systems running augmented reality simulation tasks.

Fuzzy logic paradigm is one of the few effective techniques for load balancing when tasks are

extremely volatile and unpredictable. The quantitative comparison was done for fuzzy logic load

balancing intended for use in video stream generation within prototype comprehensive simulator

ISE (Initiative Software Earth), a project of Computer Engineering Framework (CEF). Besides

3D visualization and digital communication simulation for robotic swarm interactions, other

applications of the proposed approach include signal acquisition and signal and bitmap

encryption. The mechanisms of virtualization with entitlement control make the test system a

prototype cloud computing grid. The set of the rules put into the inference engines of the

proposed approach have been proven to be sufficient to achieve the desired homogeneity of the

CPU loads and other relevant parameters, hence increase the overall system's performance.

www.manaraa.com

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... III

LIST OF FIGURES ... VIII

CHAPTER 1. INTRODUCTION ... 1

Parallel computation magnifies the performance ... 1

Fuzzy logic as a case of AI ... 4

Target system architecture .. 5

Organization of the dissertation .. 6

CHAPTER 2. LOAD BALANCING FOR SUPERCOMPUTERS AND DISTRIBUTED

SYSTEMS... 7

Types of load balancing .. 7

Concurrent programming .. 8

Hypergraph of Intelligent Agents ... 9

CHAPTER 3. FUZZY LOGIC CONTROLLER DESIGN FOR A COMPUTER SYSTEM 11

Design of Fuzzy Controllers ... 11

Big scale systems and OOP .. 13

CHAPTER 4. VIDEO STREAM GENERATION AND 3D RENDERING ISSUES 15

Video streaming .. 15

Commonly used models of light ... 16

CHAPTER 5. TEMPORAL-SPACIAL ALGORITHM ... 20

Dynamic partitioning .. 20

Actor-based methods .. 21

CHAPTER 6. PROCESSING ELEMENT PERFORMANCE MEASURING 28

CHAPTER 7. TEST RESULTS ... 31

Benchmarking of the performance of PEs .. 31

Test results for video generation ... 33

CHAPTER 8. OTHER PRACTICAL APPLICATIONS OF THE APPROACH 35

A novel scripting language YARC - script ... 35

Wireless network simulations ... 37

Cooperative positioning simulation .. 43

Image recognition, evolutionary algorithms and sensor networks ... 46

CHAPTER 9. IMPLEMENTATION PLATFORMS, LINKERS AND COMPILERS 49

Architecture and implementation are two different things ... 49

www.manaraa.com

vii

About software development. ... 50

Visual C++ .NET .. 52

Symbian 60 SDK, Carbide C++ ... 52

Overview of CEF structure ... 53

Hardware remarks ... 55

CONCLUSION AND FURTHER RESEARCH .. 57

APPENDICES .. 58

Appendix A. An example of a source code for the proposed computer language 58

Appendix B. An example of object-oriented smartphone implementation 59

Appendix C. Abbreviations and Acronyms .. 64

BIBLIOGRAPHY ... 66

VITA

www.manaraa.com

viii

LIST OF FIGURES

Figure 1. Parallel computing requires control over additional parameters. 2
Figure 2. Merging of control systems and robotics into intelligent systems. 3
Figure 3. Topology of a distributed system. ... 5
Figure 4. The proposed intelligent agent's layer structure with respect to the OSI and TCP/IP

models. .. 10
Figure 5. Examples of membership functions. ... 11
Figure 6. Example of fuzzy relationship "Y is much greater than X" .. 12

Figure 7. Blocks of a basic fuzzy logic controller. ... 12
Figure 8. Example of a control system that is part of the system. .. 14
Figure 9. Example GOP sequence of MPEG encoder. ... 16
Figure 10. The light a surface (left), image rendering. ... 17
Figure 11. Examples of generated image. ... 18
Figure 12. Example of generated video frame. ... 22
Figure 13. Example of the CPU time consumption pattern (in this case uniform rectangulars of

1/16th size). ... 22
Figure 14. Set of frames (sequence on the bottom) and their time consumption with frame

partitioning. ... 24
Figure 15. Block diagram of the control code portion of the algorithm. 25
Figure 16. Pseudo-code for the block diagram part 1. .. 26

Figure 17. Block diagram of the job metric. ... 29
Figure 18. Speedup vs. resolution for parallel processing (from HiPEC, 1999) 31
Figure 19. Example of the data monitoring window. ... 32
Figure 20.Tier assignment for Gradient (top) and Time-Space Optimizing test runs. 33
Figure 21. Job timing for Gradient (left column) and Time -Space Optimizing test runs. 34
Figure 22. Performance evaluation of a number of nodes by the same tier jobs. (Y axis - job tier,

0 for everybody, X axis - total time per job) ... 39
Figure 23. Performance of same node for various tier jobs. (Y axis - job tier (difficulty), X axis -

total time per job) .. 40
Figure 24. Performance evaluation for different tier jobs. .. 41
Figure 25. The lifecycle of digital communication simulator... 42

Figure 26. Basis for positioning using message-transmitting/receiving. 44
Figure 27. Wireless data transmission spectrum example .. 45
Figure 28. CEF-based virtual robot combat. Top view and each robot's views are shown. 47

Figure 29. Example of bar-code type of vehicle ID tags at different angles. 48
Figure 30. The test grid, side by side there are around half of a hundred CPU blocks connected

via network switches. .. 49

Figure 31. Overview of the tree of objects(left) and MFC views for signals(right). 51
Figure 32. Carbide C++ IDE. Integration of a user method into MER 3.0 52
Figure 33. Partial block diagram of CEF. ... 54
Figure 34. Prototype of Arduino microcontroller-based Ethernet robot....................................... 55

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Parallel computation magnifies the performance

Majority of the computationally-intense tasks are being done using various levels of

parallelism. Each parallelism approach demonstrates the best results for different applications.

Pipelining is an example of hardware-implemented parallelism; multithreading is effective for

the software supporting it. This dissertation among other things proposes a fuzzy logic algorithm

for dynamic load balancing during 3D video rendering for a simulated robotic vision in a

distributed cluster of computers (Figure 1). The algorithm has been tested within a

comprehensive virtual reality simulator ISE (Initiative Software Earth), a project of Computer

Engineering Framework (CEF), and the results show better performance than other approaches

including static balancing and gradient balancing.

Widely known estimation made in 1965 by Gordon E. Moore (Fawwaz T. Ulaby, 2009)

predicts that the number of transistors in the minimum-cost CPU doubles every two years. It may

have been a coincidence at first (and he initially guessed doubling every year), but for the last 40

years it became well accepted by the designers and strategy-makers, so Moore's Law became a

self-fulfilling prophecy of computer industry. The outstanding issue, however, is that feature size

of a transistor cannot become zero, and the power density of a microchip cannot continue to

grow beyond its melting point.

There are promising developments in nano-technologies and quantum computing, but the

main reason computers increase their 'operations per second' ratio nowadays is parallelism. Dual-

and quad-core CPUs are becoming ubiquitous; more CPUs are put on the motherboards and

many video cards contain arrays of Graphic Processing Units.

www.manaraa.com

2

Figure 1. Parallel computing requires control over additional parameters.

One of the most powerful solutions is to combine computer architecture with effective

network, that is, instead of attempting to incorporate as many CPUs as possible into one

computer, a number of independent computers are connected together via a network switch

(Figure 3). NASA's information power grid concept, together with the commercial cloud

computing, will make high-performance computing power accessible to general users as easily

as electricity from an electrical power grid (Leinberger, et al., 1999)(NASA, 2010)

The application level parallelism requires significant programming efforts. Often

commercial or open-source frameworks used to run the distributed system (Boost),(GNU, Free

Software Foundation), (Mathworks), etc. This eliminates the necessity to implement many

intermediate layers among the servers. However, it deprives the researcher from full control over

the system, and establishes an overhead for practically any interaction in the network. This

overhead might be significant in case of contextual resource negotiation-based task allocation,

even though some algorithms were proposed for complex multi-agent software systems (Jiang, et

al., 2009).

www.manaraa.com

3

Figure 2. Merging of control systems and robotics into intelligent systems.

Load balancing could be viewed as an optimization of total time totT :

Tasks Cycles
repartDMrepartincommcomptot TTtttT _

 (1)

where compt is computation time, commt - communication time, repartint _
 - repartitioning within a

cycle of the task, DMT - time required for data migration (it can be optimized by effective

caching), repartT - is the repartitioning time for an individual task.

In general case, the optimization of the partitioning of the workload is hard to formalize

in details because of the significant number of undetermined parameters. Even the CPU

utilization for a processing element (PE) for a given task might not be known in advance if the

CPU is used by several independent tasks; in addition, the execution of code is subjected to

control by operating system (fluctuating processes' priorities). Although OS has the ultimate

authority over the processes and threads, the distributed system can establish policies and try to

www.manaraa.com

4

govern the execution on the application level, using some type of inter-process communication

(Stevens, 1999).

Fuzzy logic as a case of AI

These considerations led to the realization that soft computing (a consortium of AI tools like

fuzzy logic, neural networks, and genetic algorithms) is the most appropriate technology for the

establishing an effective course of actions within the distributed system, in order to create

highest degree of scalability (Abbot, et al., 2010). This course of actions of a distributed system

might be extended beyond what is commonly referred to as 'load balancing', but in this thesis we

address the repetitive changes within the cycle in (1). Hence the objective is to find better tin_repart

from the above formula.

Fuzzy logic and control systems were researched for a variety of different applications;

Figure 2 shows the general directions of the evolution of robotics and digital control systems.

These two areas are merging into intelligent systems (R.C.Dorf, 2008), which absorb all the most

desirable qualities.

There have been many publications separately on load balancing, fuzzy logic, and 3D

graphics. There are some papers on application of fuzzy logic to load balancing, and fuzzy logic

to 3D graphics, for example, on level-of-detail management. This thesis presents novel approach

that is on the junction of these three areas. This dissertation proposes an algorithm for dynamic

load balancing in a distributed environment that has as its main workload a 3D video stream

generation. The approach shows an improvement in the load balancing over other methods. The

quantitative analysis has been done for two other algorithms and comparison with the existing

state-of-art has been performed.

www.manaraa.com

5

Target system architecture

 There is distinct difference between architecture and implementation (Nguyen, et al.,

2007). Implementation of the proposed approach and algorithms is NOT the focus of this thesis;

instead, it is the architecture of a target system that needs illustration. And it is to illustrate the

target system, I am introducing the simulation environment Initiative Software Ether (ISE) - a

fully functional distributed system that was used as the testbed for the quantitative analysis.

ISE was implemented on the base of software package currently referred to as Computer

Engineering Framework (CEF). CEF was started by me in 1989 to provide software engineering

community with world class open source computing suit, its original design was focusing on 3D

rendering and later offered a testing environment for image and signal processing algorithms

(including signal acquisition for GPS). The term 'framework' was adopted in accordance with the

contemporary trends in software engineering community.

Figure 3. Topology of a distributed system.

Commercial entities, government and research institutions acknowledge the necessity to

design, develop and maintain proprietary and/or open libraries that implement at least partially

www.manaraa.com

6

the algorithms that are described in specifications. It is true for practically every area of industry

or science. For example, the ones that have relevance to GPS cooperative positioning include

C++ projects GPSTk(GPSTk), generic source codes for scientific programming could be found

in the libraries of Free Software Foundation GNU (GNU, Free Software Foundation),

Boost(Boost), SourceForge(SourceForge), and scripting integrated development environments

(IDE) MATLAB(Mathworks), Simulink(Mathworks), LabVIEW(National Instruments), SPW,

Octave(an open source alternative to MATLAB), SPICE (SPICE), also Symbian IDE(Symbian)

and others.

Organization of the dissertation

The rest of this dissertation is organized as follows. Chapter 2 reviews the issues of load

balancing for supercomputers and distributed systems; it overviews the state of the art systems.

Chapter 3 reviews fuzzy controller design in general and current trends in state-of-art

developments. Chapter 4 briefly describes the issues of video stream generation and 3D

rendering technologies that represent the task - the subject of the load balancing. In Chapter 5 the

proposed algorithm is formulated. Chapter 6 describes some of the details of the target system

and the test system used to gather the data for the quantitative analysis. Chapter 7 shows the

numerical results of the test runs. Section 8 outlines the opportunities for further research and

practical applications of the proposed approach. Chapter 9 describes the programming tools,

linkers and compilers used for implementing the proposed approach, as well as the platforms

used, or considered to be used for the distributed environment deployment. Conclusion

summarizes the thesis and states the further extension of the research.

www.manaraa.com

7

CHAPTER 2. LOAD BALANCING FOR SUPERCOMPUTERS AND
DISTRIBUTED SYSTEMS

Types of load balancing

Parallelism, and hence load balancing is an essential part of any contemporary computer

system, be that a multi-core CPU or multi-node server farm. Depending on the task the system

was designed for, the load balancing approach varies. The feasible algorithms for load balancing

for a small-diameter multiprocessor system might be inefficient and hard to apply for big scale

web-servers. Depending on the layer at which the load balancing is implemented, it might be

done by a hardware block (Control Unit of a computer, multi-layer network switch, etc.), or a

software program or sub-system.

In literature load balancing mechanisms are classified into two major types: static and

dynamic. Static load balancing represents a scheduling mechanism to disseminate jobs among

the participants, that is, among multiple CPUs, computers, network links, storage volumes,

graphic cards, resident programs or other resources. Dynamic load balancing changes its policies

or parameters depending on the work flow.

Depending on the nature of the participants, there are different targets for the

optimization. Load balancing might pursue one or several of the following goals:

 maximize performance (e.g. multi-CPU systems)

 optimize resource utilization (e.g. storage frameworks)

 minimize response time (e.g. for network servers)

 increase reliability (via redundancy)

 bringing more profits to a web-represented business(via data mining)

www.manaraa.com

8

Often some of the combinations of these goals are hard to achieve. For example,

redundancy and optimal resource utilization are likely to increase server response time.

Naturally, since most balancing algorithms can be described in the framework of optimization

theory, it enables to involve classical results linked with convergence, its speed and other

elements. The analysis of the load balancing based on the steepest descent algorithm and its

speed of convergence can be found, for example in (Bronevich, et al., 2008). One of the classical

dynamic load balancing methods is based on "gradient model", when the pressure gradient is

defined by the requests from the idle processors. Under this pressure gradient, the backlogged

tasks are transferred to the nearby idle processors. The publication (Lin, et al.) formulates the

gradient model as to be independent of system topology, fully distributed and asynchronous.

Global balance is achieved by successive refinements of many localized balances.

In some instances static load balancing is preferable to the dynamic. The variation of a

static load balancing is when there is no exchanging of any information beyond the initial

configuration of the system participants. For example, suggested in RFC 3074 Dynamic Host

Configuration (DHC) Load Balancing Algorithm enables multiple, cooperating servers to decide

which one should service a client (Volz, et al., 2001).

Concurrent programming

There are many models of concurrent programming, and mathematical description of

communicating sequential processes (Hoare, 2004). Multi-process and multi-thread approaches

are often combined and even utilized in energy-scalable embedded multiprocessor architectures

(Schaumont, et al., 2005).

When the application is performing a task related to the video stream, there are certain

aspects that need to be taken into account. First of all, common representation of a video stream

www.manaraa.com

9

is block structure. Each block contains fixed or variable number of frames. Each of these frames,

in turn, could be represented by blocks of images. In general case there is no guarantee in

homogeneity of the computational complexity of either frames or portions of one frame. That is,

some portions of a movie might be more computationally intense, or particular portions of a

frame might take longer to compress/decompress.

The situation is more complicated when the video stream generation is being done using

a number of nodes. If these nodes are not dedicated to a single task, their performance might be

hard to predict. For example, if a node used for ray tracing, but in addition to that allows

execution of digital signal processing application, there might be periods when the CPUs are

extremely busy with one task or the other. If this node is expected to deliver a video frame, or a

compressed sequence of frames, but slows down the delivery, the video stream generation might

be delayed up to the point when the memory is exhausted and the entire task is halted to

complete stop.

Hypergraph of Intelligent Agents

When dealing with local grid resource scheduling, the term 'hypergraph' usually refers to

graph partitioning. In this case, vertices represent the computational load associated with data

and the edges (hyperedges) represent data dependencies. This is the type of parallelism that was

developed to increase performance of mesh methods, adaptive scientific computations, fluid

dynamics, etc. Hypergraph manipulation methods have been and remain a very active research

area (Catalyurec, et al., 2009), (Catalyurek, et al., 2007).

In this thesis, however, we are targeting bigger scale of scheduling. We are not referring

to pipelining within a processing unit, but rather to global net of intelligent agents. Even though

the agent processes may still be deployed within the same physical computer and use the same

www.manaraa.com

10

CPU. To emphasize the hierarchy that may take place, and possible encapsulation, we are

referring to this multi-agent system as a hypergraph.

Figure 4 shows the comparison of OSI, TCP/IP and CEF, our implementation, protocol

architectures. The same intelligent agent can presume different roles in network. An agent can be

an access point to a subnet of other agents.

Figure 4. The proposed intelligent agent's layer structure with respect to the OSI and
TCP/IP models.

www.manaraa.com

11

CHAPTER 3. FUZZY LOGIC CONTROLLER DESIGN FOR A
COMPUTER SYSTEM

Design of Fuzzy Controllers

Fuzzy Logic Controllers (FLC) are more and more widely used in recent years because

they represent a solution in cases when the analytic expressions are too complex, but the

heuristic explanation is too hard to program. Fuzzy Classifiers are also being actively researched

(Nurnberger, et al., August 2007),(Jamshidi, et al., 2003), (Jamshidi, 2007), their application to

neurobiology makes cybernetic organisms a reality.

Figure 5. Examples of membership functions.

Fuzzy logic as a soft computing tool has many common concepts with statistics.

However, historically it has developed its own terminology and is now placed by most

researchers closer to practical artificial intelligence than to mathematics.

The basic item in Fuzzy logic is a Fuzzy variable, which is a function of one or more

parameters. In discrete case, it is a set of numbers. And, by defining operations on these fuzzy

objects, we can construct a consistent way of handling them as if they were regular numbers

('crisp' values).

It is common to give fuzzy variables intuitively self-explanatory linguistic tags. E.g. one

can define a fuzzy parameter Temperature and assign values "hot" or "cold" to it, meaning that

the value "cold" is some distribution in negative half of the temperature axis, and "hot" is on the

positive side. The distribution functions that define fuzzy variables are referred to as

www.manaraa.com

12

"membership functions" (MF).

Usually, membership functions are selected to comply with several common-sense rules:

there should be at least one point in the MF's Universe (area where it is defined) that has value

1.0. Another practical rule requires that the left-most and right-most MFs had 1.0 up to the

boundary. Figure 5 shows examples of membership functions. And Figure 6 demonstrates one of

the implementations of fuzzy relationship "Y is much greater than X".

Figure 6. Example of fuzzy relationship "Y is much greater than X"

The common components of a fuzzy logic controller include five sequential blocks

(Figure 7): Pre-processing, Fuzzification, Inference engine (contains the Rule base),

Defuzzification, and Post-processing.

Figure 7. Blocks of a basic fuzzy logic controller.

Pre-processing adjusts the input parameters to a unified format. It could be scaling,

bringing the data to certain sampling rate, filtering irrelevant interferences out, averaging, etc.

For the tests we did we used non-linear normalization into the common range of values.

www.manaraa.com

13

Fuzzification is procedure of converting the 'crisp' values into the fuzzy parameters. At

this stage the fuzzification is applied to the input parameters. For example, we can fuzzify the

execution time of the partition into "short time", "long time", etc.

Defuzzification is the inverse process, which is, analyzing the fuzzy output parameters of

the inference block and determining the crisp data to be produced by the controller. Center of

gravity, bisector of area (BOA), mean of maxima (MOM), or other approaches are commonly

used.

Post-processing further refines the defuzzified values to the values appropriate for the actuator.

For the load balancing tests performed, we had to have hard limitations on the partition sizes (it

cannot be 0, and it cannot exceed the size of the whole job).

The inference engine is the main part of a fuzzy logic controller, and many approaches

have been proposed. Rule base (heuristics) is programmed by a human and may contain

linguistic definitions as well as fuzzy logic parameters. For example, boundaries and settings of

the fuzzy logic membership functions, etc. The inference engine determines the way the rules

from the rule base are executed. Their so-called firing strengths, in combination with their

consequent functions, define the output fuzzy values. Examples of inference mechanisms include

Mamdani and Takagi-Sugeno models (Nurnberger, et al., August 2007).

Control surfaces could be used to derive conclusions as to how to interpret the rule bases

using as input the crisp values directly.

Big scale systems and OOP

In systems including significant number of interacting participants, the model outlined in

Figure 7 can still be loosely used, but the complexity of the inference engine becomes hard to

manage. For example, Figure 8 describes government income flowchart (R.C.Dorf, 2008). The

www.manaraa.com

14

controlling mechanisms themselves are parts of the system; even though the diagram identifies

one parameter (national income) the nonlinearity and non-time-invariance are substantial. If we

tried to design an AI optimization of these interconnections, and use evolutionary algorithm, we

would have to let the system itself generate the fitness function for the algorithm permutations.

Figure 8. Example of a control system that is part of the system.

The reality is that blocks "Government" and block "Consumers" have a lot in common, in

the sense of behavior or attributes; and the source of "private business investment" can be in fact

a collection of individuals who are both Consumers and Government at the same time. This

increasing complexity of the details of the model could be to certain degree resolved using the

terms of object-oriented design.

www.manaraa.com

15

CHAPTER 4. VIDEO STREAM GENERATION AND 3D
RENDERING ISSUES

Video streaming

Since every load balancing approach has its strengths and weaknesses, depending on the

set of tasks it is applied to, it is important to analyze the task and assure its adequate matching to

the balancing control mechanism. This chapter gives brief definitions of 3D video rendering

process, which is the subject of our workload partitioning algorithm that we describe in the next

chapter.

3D rendering, and even to higher extent, video compression have become a good subject

for algorithmic parallelism and effective hardware implementations (Purcell, et al., 2002).

Not only the video compression itself, but the computational challenges of the

management of the consumer video delivery systems are a highly active area of research. Load

balancing is important in video-on-demand service (Guo, et al., 2008)(Gerbec, et al., 2004), for

cable television and especially for wireless broadcasting, which has relatively limited channel

capacity.

Consumer video gaming industry is ready to have hardware ray-tracing for the high-end

consoles. We were interested in the prototype 3D generation without using third-party hardware

or software accelerators. The ray tracing, ray casting and other methods are notorious for the

high computational costs, but very suitable for parallelism. This makes it an interesting subject

for the custom load balancing.

www.manaraa.com

16

Figure 9. Example GOP sequence of MPEG encoder.

For every given frame, the task is to calculate the color components of every pixel in the

bitmap. In case of uniform sampling rate, each instance of time reflected by a bitmap image.

Physics engines and miscellaneous simulation models usually presume the time increments are

uniform and monotonously grow. However, video compression for video streaming, during its

execution, requests frames in non-sequential order. Figure 9, for example, shows the MPEG-

encoding format sequence of intracoded (I), bidirectional (B) and predicted (P) frames within a

Group Of Pictures (GOP).

There are many reasons for choosing one sequence formula over another. For example,

the bit stream optimization, i.e. by subsampling the chrominance values of the image, one can

reduce the amount of the raw video data (Brown, 1995). For many practical reasons in the

comprehensive virtual reality simulations it is preferable to have straight sequence. Indeed, if the

modeling includes iterative solid body physics or hydrodynamics calculations, it is not feasible to

skip frames and maintain big buffers with significant amount of data from the previous steps.

Commonly used models of light

Moreover, not only the sequence of frames can be skewed, but also the desired order of

the pixels might be not orthogonal (left to right and top to bottom). E.g. zigzag scanning pattern

of JPEG-based encoding affects negatively spacial homogeneity of the data as far as memory

input/output operations concern. In this case hashing mechanism with insufficient memory will

www.manaraa.com

17

have fewer hits, and more misses. This pattern aligns the video data for a video stream

compression into required sequence.

In either case, each pixel's color components are defined by one (or multiple in case of

casting or radiosity) ray tracing procedures. Figure 3 shows the diagram of the global model of

light and the geometry of the classic ray tracing.

Figure 10. The light a surface (left), image rendering.

The formulas of the model of light depend on the desired approximation of the

parameters of the environment. Most of the tests we performed had the following expression for

the intensity of the ray jI :

d
KIKIKKKIKII ttssi

n
jdlaaj

j

i
])cos cos([

n

0i

s

 (2)

,where

- aI and aK define the inherent illumination

- n - the number of sources of light

-
il

I - the intensity of the visible light source il .

- dK , sK , and Is - the reflective properties of the surface

- tK , and tI are the parameters of the refraction.

- K , and d - are the scale coefficient and the distance to the point of view.

 a) b)

www.manaraa.com

18

For many applications this model produces sufficient visual realism and acceptable

computational cost. In our case we applied it to the augmented reality project Initiative Software

Earth (ISE) and were satisfied with the achieved level of realism. Of course, like with any 3D

product, the artistic factor is important. For effective rendering, the shapes and the envelopes'

hierarchy need to be designed properly. Starting from the early methods of ray-tracing, the 3D

image generation required an effective geometry of the objects and their bounding volumes

(Weighorst, et al., 1984). The shapes and hierarchy need to be designed well for effective

rendering. Also, high geometric complexity could be replaced by carefully chosen texture

bitmaps. This can simplify the scene, but significantly reduce the rendering time.

Figure 11. Examples of generated image.

Figure 11 and top image of Figure 13 show examples of video frames for the robotic

vision simulation in artificial environment. It contains moderate amount of triangulated and non-

triangulated shapes. To increase the workload, a number of glass-like objects have been

introduced to stimulate ray stack bunching during refraction and reflection. Other scenes were

also used for the tests, including indoor environment, space (Earth orbit), regular and irregular

mazes. Practically any reasonable scene contains areas that are highly populated with objects,

and areas that could be taken as an open space.

www.manaraa.com

19

Virtual reality user interfaces and visualization have been a lucrative business for

computer-aided design, architecture, consumer electronics, and entertainment. More advanced

virtual reality systems offer precise modeling of the simulated environments, for example,

contemporary flight simulators for airspace industry produce realistic simulation of the radio

communication between the cockpit and the control tower, affected by noises and disruptions.

Comprehensive modeling of digital communication systems, as well as swarms of

autonomous vehicles is complicated to implement in real time simulations. It requires big

quantities of computational resources, CPU and memory. That was one of the motivational

points for choosing video generation to be the subject of the distributed system. The load

balancing is also suitable for operating with elaborate multi-tier models, involving cooperating

robotic swarms and comprehensive digital communication simulations.

As many 3D animation products show, high geometric complexity could be replaced by

carefully chosen texture bitmaps. This can simplify the scene, but significantly reduce the

rendering time.

www.manaraa.com

20

CHAPTER 5. TEMPORAL-SPACIAL ALGORITHM

Dynamic partitioning

Since every load balancing approach has its strengths and weaknesses, depending on the

set of tasks it is applied to, it is important to analyze the task and assure its adequate matching to

the balancing control mechanism.

The purpose of load balancing is to partition the amount of work that needs to be done

among a number of processing elements (PE). In multi-core or multi-processor systems PE

represents a CPU or a core; in multi-computer environment, PE also has separate memory and

higher cost of interactions with the rest of the distributed architecture. Several main types of load

balancing could be identified. Static partitioning is done before the computations started and

carried out in uniform way until the completion.

Dynamic load balancing changes the partitions shapes and content during the execution;

or changes the shapes of the graphs in case of hypergraph model(Catalyurek, et al., 2007). There

have been developed libraries: Zoltan (Zoltan, 2010), PT-Scotch (Pelligrini, 2008), PaToH

(Catalyurec, et al., 2009), ParMETIS (Karypis, et al., 2003), etc. Usually, call-back interfaces are

invoked to use these libraries for variety of parallel computation applications. One of the most

common applications of load balancing is network traffic scheduling(Shi, et al., 2005).

There are certain parameters of a task or restrictions of the chosen numerical methods

that make some load balancing approaches work better. For example, for DSP applications or

finite element methods the data locality might be important and data migration hard to

implement; for some other applications only a very fast partitioner would make parallelism

feasible.

Adaptive neural-network models, or combined fuzzy-neural network models have been

www.manaraa.com

21

used for recursive nonlinear traffic prediction applied to MPEG video sources(Doulamis, et al.,

2003),(Doulamis, et al., 2004). In our algorithm we use not the prediction of the compressed bit

stream traffic, but the prediction of the complexity of the frame content.

The proposed fuzzy logic approach to dynamic load balancing is for a class of large-

diameter multiprocessor systems. It is asynchronous; the model presumes the star system

topology, which can be extended to star fractals with the introduction of higher level tasks, and

made applicable to wide variety of cases.

Actor-based methods

Fuzzy visual systems could be automatically tuned using, for example, evolutionary

algorithms (EA), for both single- or multi-objective cases(Muñoz-Salinas, et al., 2008). In part,

the motivation for our proposed approach was development of a testing environment for robotic

vision systems. That is, the design of an artificial environment that can generate consistent,

reasonably realistic frames to be fed into the training sequences of the simulated individual

robots' AI blocks.

The proposed approach is among the Agent- or Actor-based methods (Cao, et al., 2005).

These methods are known to be well-performing in the environment of large number of

processing elements with substantially non-homogeneous performances (CPU, memory, number

of cores, network adapter's capacity, etc.), where the overhead due to the message passing is

unpredictable and, in fact, not guaranteed.

www.manaraa.com

22

Figure 12. Example of generated video frame.

Figure 13. Example of the CPU time consumption pattern (in this case uniform
rectangulars of 1/16th size).

The Actor model is based on object-oriented approach and states that the computational

entities, in response to their input messages, can either send other messages or create other

Actors. Actor model could be viewed as system of systems, since any encapsulated or

encapsulating object is an Actor too.

When applied to the video stream generation, the Actors receive the messages containing

the requests for the generation of areas of a frame bitmap, and send the response messages

containing the generated array of pixel values.

The brightness of each pixel of the Figure 13 represents the CPU time required for

www.manaraa.com

23

rendering. And each block's overall brightness represent each PE's resulting time. The higher

brightness of a pixel indicates higher number of CPU cycles it took to perform the calculations.

The total picture is the time required to complete a frame from Figure 12. It is worth mentioning

that the particular implementation of the operating system functions that give the information

about the CPU cycles, does not guarantee the precise values. Instead, it gives the number that is

the best approximation. It is reflecting the fact that any performance monitoring imposes an

overhead to the primary workload, hence, is undesirable.

With a sequence of frames put side by side, like on Figure 14, it is seen that the bitmap

has the tendency to retain the brightness of certain areas. And it is not only because the areas

have the same objects (same visual information), but also because of the nature of the 3D

generation makes some areas more computationally expensive. A cluster of objects rotating on

one place may cause significant changes in video stream, but keep its CPU cycle number

relatively unchanged.

It is also important to take into account the fact that the complexity of a task is not

necessarily the only factor determining the CPU usage. In low memory cases the operating

system has to consume significant amount of CPU resources to satisfy the requested volumes of

virtual memory. The use of virtual memory, in turn, affects, and is likely to surpass the actual

time of the execution of the main workload because the input-output operations with hard-drives

or network storage are in orders of magnitude slower than the regular memory fetching.

For this reason, and because of the nature of the concurrent Actor model, this thesis's

approach suggests taking measurements of the actual time of the execution of a portion of the

load.

www.manaraa.com

24

Figure 15 shows the block diagram of the control code portion of the proposed algorithm.

Each Actor Ai represents a Processing Element of the distributed system. Ai has, as its property,

the record of the past jobs,),(jAJ i . At the completion of each job, the record is updated and a

new performance rating assigned to the Ai. The performance rating),(jAP i determines how big a

partition is assigned to the Ai during the next cycle.

Figure 14. Set of frames (sequence on the bottom) and their time consumption with frame
partitioning.

In general case, it is reasonable to partition the video-stream processing task into

partitions that range from big groups of frames to small areas of the single frame's bitmap. The

algorithm we propose is most effective for the frame-by-frame divisions. That is, each frame is

divided into YX rectangular areas. Those areas are the atomic granularities of the load, and

each partition is defined to contain between 1 and YX blocks.

As it was shown in Figure 13 and Figure 14, the time consumption snapshots are divided

into 44 rectangles. Similar to the well-studied video compression observations, where some

areas of the bitmap remain relatively unchanged during short periods of time, the time

consumption of certain areas stays the same. As we pointed out earlier, this behavior is likely to

www.manaraa.com

25

be true even in more cases than with the visual bitmap because of the locality of structures of the

3D objects and their envelopes.

Figure 15. Block diagram of the control code portion of the algorithm.

In addition to the performance records of),(jAJ i in time domain, the controlling server

is to collect the spacial records of the previous partitioning)(tS .)(tS is a matrix YX ,

containing the weight),,()(yxtWtS of the granularities of the bitmap. Note that because it is a

spacial characteristics and the fact that the response time of the actors is not synchronized, at the

time of the load balancing, some of the values in),,(yxtW may be undefined. We can presume

that the weight),,(yxtW represents the computational cost of the granularity, but, of course, it is

in fact the cumulative costs of computations and the message passing.

www.manaraa.com

26

Figure 16. Pseudo-code for the block diagram part 1.

Not only)(tS may be undefined for some indices, it also may carry discontinuities that

were not the result of the video scene. It comes from the fact that because each),,(yxtW has

been recorded from an actor),(jAP i , it is a part of some job,),(jAJ i , and implies close

coherence only within the mask),(jAM i of that job. For example, Figure 13 shows that the jobs

done by different PEs have rather different weights. In the middle, on the bottom there are two

blocks with significantly different brightness. It would not have happen for the PEs with close

performance parameters (CPU/memory/message-passing costs)

To address that, we propose to use performance normalization for different jobs

according to the assigned performance rating of the PEs that did them.

The approach works well with non-sequential video stream generation. Because the

Start.
Initial stage:

- Receive a task (a 3D scene).

- Split the task into sub-tasks that have only one camera, continuous video stream.

- Split each video stream's frame into YX granularities.

- Initialize for),,0(,0 yxWt

Frame cycle stage:
- For the duration of the video sequence:

Start frame cycle:
- Pick available bee (connected and marked as idle).

If there is an issued (but not done) job for the Bee's Tier

Then
- assign this job to this bee and go to Start frame cycle

Otherwise
 - split the frame into granularities in such a way that there is a job with

tier at least as low as the bee's current rating.

 - Update the rating of the bee.

- Consolidate the done bitmap fragment

- Assemble the granularities into the frame and save it.

- go to Start frame cycle.

Final stage:
- Save the statistics for individual bees to re-use in fuzzy logic evaluation of the processing elements.

End.

www.manaraa.com

27

amount of the data,),,(yxtW , needed for the evaluations is significantly less than the video

frame bitmap itself. The fact that some frames will be rendered earlier is actually making the

matrix)(tS filled out with more data. In case of the predicted (P) frames, some estimation

would have to be done, and the complexity sensing can be achieved using adjacent granularities.

Figure 16 summarizes the proposed algorithm.

www.manaraa.com

28

CHAPTER 6. PROCESSING ELEMENT PERFORMANCE MEASURING

This chapter defines the job (partition) metric calculation of the proposed algorithm, and

describes some details of the implementation we used to collect the presented test data.

There have been developed many types of fuzzy inference mechanisms. In the proposed

implementation, as an intermediate inference engine, we used Mamdani approach. The

implementation has two fuzzy logic controllers, they are marked FC1, and FC2 on the diagrams.

The former has two inputs (antecedents) and one output (consequent). FC2 has three inputs and

one output. We used Max() composition for job metrics and the complexity estimation metric.

In cases of operating with the time parameters, the non-linear scaling is preferable for the

fuzzification. And we used 5 linguistic tags for the jobs: 'Very Slow', 'Slow', 'Average', 'Fast',

'Very Fast'. The rule base for the FC1, and FC2 in general case should contain 555 and 55

input tables. However, to make the FC faster, we also introduced fuzzy variables 'Any' and

'None'. It lowered the number of the parameters necessary to derive the decision during the load

balancing.

The basic scenario programmed into the rule base includes rules similar to the following:

__

1: if (LatestJobs & LatestJobs are DoneFast)

2: and (PreviousJobs & PreviousJobs are DoneFast)

3: and (EarlyJobs & EarlyJobs are DoneAny)

4: then

5: PE is Fast(AssignBiggerLoad)

__

The job metric takes into account the estimated time of the completion of this type of job

for this type of area in this particular scene. It has the rules like:

www.manaraa.com

29

__

1: if (ActualJobTime & ActualJobTime is Short)

2: and (DesiredTime & DesiredTime is Medium)

3: then
4: Job is DoneFasterThanExpected

__

We tried a variety of parameters and implementations of the membership functions. Smaller

rule bases can work as effective as large ones, also, the controllers work faster if the fuzzy

universe does not contain large amount of samples.

Figure 17. Block diagram of the job metric.

Large universes also occupy more memory per variable, which multiplies by the number

of the processing elements and the number of the matrix),,(yxtW containing the past

performance records.

www.manaraa.com

30

For each of the controllers we did aggregation via max operator and centroid

defuzzification. Other popular methods include middle of maximum, bisector, largest of

maximum, etc.

www.manaraa.com

31

CHAPTER 7. TEST RESULTS

Benchmarking of the performance of PEs

The proposed time-space optimizing algorithm was compared against others, including a

static partitioning and a dynamic balancing without the region complexity sensing. In general

case, to assess the computer cluster performance, it is useful to measure the benchmark of

individual processing elements. There are a number of well known tests that are being run on

different hardware platforms under different operating systems. They range from text processing

(e.g. search/replace operations), to real-time network monitoring and scientific applications.

Num. of

CPUs
640x480 1024x768

tracing(sec) speedup tracing(sec) speedup
1 330 1.00 844 1.00
4 156 2.12 394 2.14
8 52 6.35 131 6.44

16 23 14.35 59 14.31
32 13 25.38 28 30.14

Figure 18. Speedup vs. resolution for parallel processing (from HiPEC, 1999)

It is impossible to design a computer system that would produce optimal results for any

random application. Even if considering only the measurable parameters of a system, for some

benchmark tests, a system can outperform others. For other tests the same system can show

mediocre results. Non-measurable parameters include ease of use, maintenance and

management. Good programming style and use of object-oriented languages like C++ facilitate

the development process (Stroustrup, 2000), (Meyers, 1998). The effectiveness of business

management is beyond the scope of this thesis; some material could be found, for example, in

(Chrissis, et al., 2007).

www.manaraa.com

32

In general, the architecture of a distributed system affects the test results. If a distributed

grid contains distributed gateways that connect mainframe computers and the target servers, the

use of the intermediate layer would be most efficient. In this case, according to (Shaout, et al.,

1998), the fuzzy scheduling resulted in 16% improvement in the average total time to complete a

job.

Figure 19. Example of the data monitoring window.

Fragment of the data of HiPEC, from (HiPEC, 1999), Figure 18 shows that the speedup is

higher for higher resolution image generation. The effects of commt from formula (1) and other

factors are also apparent. In comparison, CEF test runs were conducted on a system with CPUs

with wide range of individual performances.

www.manaraa.com

33

Test results for video generation

Figure 19 shows an example of the test run for a portion of the system. The one-

dimensional scatter graphs consisting of the color-coded circles represent the individual job

assignments for a particular PE (Processing Element). The bar graphs for each PE represent the

time of the jobs with respect to the desired range of the completion.

Figure 20 shows the PE-assigned performance ratings, there is slight difference in the

pattern of assigning numbers. The improvement is seen from Figure 21 - it shows that the better

consistency, smaller variance and closer values to the target range. Just as expected, the test runs

with the statically set parameters showed higher number of partitions which in particular

implementation of the video stream generation (ISE simulator under CEF library) required

additional re-compilations of the macrocode and additional computational overhead.

Figure 20.Tier assignment for Gradient (top) and Time-Space Optimizing test runs.

There were substantial differences in individual PEs' performances. As Figure 19

indicates, some of the CPU times were twice shorter. In addition to that, the topology of the

www.manaraa.com

34

network included both 1Mbps and 100kbps network switches, meaning significant difference in

message passing and the distributed object management handling.

Figure 21. Job timing for Gradient (left column) and Time -Space Optimizing test runs.

The other test runs, for the scenes of different complexity, showed the time-space

optimization work better for the scenes that have areas with significant relative computational

cost. The graphs for calibration and comparison are shown in Figure 22, Figure 23, and Figure

24.

www.manaraa.com

35

CHAPTER 8. OTHER PRACTICAL APPLICATIONS OF THE
APPROACH

A novel scripting language YARC - script

Establishing effective load balancing in a distributed system allowed using its

performance to the full extent. Artificial Intelligence, neuro-fuzzy and soft computing rely

heavily on high-speed number-crunching computation (Jang, et al., 1997). Another element of AI

has been researched and a new programming language has been designed. YARC script is a

XML-like language describing object-oriented relationships among different entities, and their

behavioral patterns. Despite the fact that it was intended originally for the 3D animation

programming, it has all the capabilities of a scripting language with arrays, matrices, extended

preprocessor, and a number of multi-dimensional data types.

Operators +,-,++,=, <, >, *, /, etc. are implemented and take operand of different types

(numbers, strings, matrices, vectors or other objects). The list of operators is constantly growing

and custom operator overloading paradigm was adopted in C++ language style.

Here is an example of YARC script's arithmetic instructions:

#define CHARGES_BASE

 [(0.001+SIN(time*4.0*2.0/USE_PERIOD)^2)*2.0*AREA_LENGTH, 0.0, 0.0]

#define FIELD_LAYER_NUMBER 0.5

#define THEPOINT [FIELD_ELEMENT_NUMBER*AREA_LENGTH_UNIT, \

 FIELD_LAYER_NUMBER*AREA_HEIGHT_UNIT, \

 FIELD_ROW_NUMBER*AREA_WIDTH_UNIT]

#define THEPOINT_FIELD1 (THEPOINT-(-CHARGES_BASE*0.5))

#define THEPOINT_FIELD1_ORT (NORMAL(THEPOINT_FIELD1))

#define THEPOINT_FIELD1 (THEPOINT_FIELD1_ORT/(TV_Length(THEPOINT_FIELD1)^2))

 RotationAroundZ (((ComponentY(THEPOINT_FIELD_ORT) gt 0.0)

 ? (ACOS(PROECTION_TO_XZ))

 : (-ACOS(PROECTION_TO_XZ))))

www.manaraa.com

36

- these are also demonstrating the pre-processor capabilities. And it is the way to do macro-

programming, that is, using output of some scripts or other programs to feed into system as the

human-written program.

And this is an example of Actor(in geometric sense) definition:

Establishing of the new language not only separated the user of the system from the

platform-dependent programming, but also opened an opportunity for genetic programming

using the operations and the operands as the nodes and the leaves of a formula.

YARC-script-defined motion pattern also can be used as elements of a set of

chromosomes of evolutionary methods. This is one of the basic ideas behind the Petri dish

concept of CEF robotic intelligence projects. Figure 28 shows a prototype robotic combat

simulation.

<ACTOR Version="2.2"; Name="ATAV_Radar"+ATAV_NAME;>

 <ParentName>ATAV_NAME</ParentName>

 <FormName>"ATAV_Radar"+ATAV_NAME</FormName>

 <MaterialName>ATAV_RADAR_MATERIAL</MaterialName>

 <ColorName>ATAV_RADAR_COLOR</ColorName>

 <ParentMat>TM_E Shift [-ATAV_LENGTH*0.45, //-ATAV_RADAR_HEIGHT*0.5,

 ATAV_HEIGHT-ATAV_RADAR_HEIGHT*0.85, 0.0]

</ParentMat>

<InternalEnvelopeFormName>"NULL"</InternalEnvelopeFormName>

 <ExternalEnvelopeFormName>"NULL"</ExternalEnvelopeFormName>

 <SmoothingType>0</SmoothingType>

 <ReflectionType>ATAV_RADAR_REFLECTION</ReflectionType>

 <RefractionType>ATAV_RADAR_REFRACTION</RefractionType>

</ACTOR>

www.manaraa.com

37

Wireless network simulations

Another area of my research included comprehensive digital communication simulations.

Here are some of the common characteristics expected from a state-of-art modeling tool:

 For the performance of a component, circuit or network to be adequately

evaluated, there should be appropriate detail level of all factors which could

influence it.

 The components should have common set of parameters so that simulated devices

can be interconnected with each other to form compound devices, circuits or

networks.

 Interfaces that pass sufficient information between the constituent components so

that all possible interactions are identified.

 Computational efficiency that allows a tradeoff between speed and accuracy. This

allows coarse or fine estimations of the system, which is especially important on

the early stages of a project.

 Telecommunication and computer applications require the capability to simulate

the components over a desired spectral range. This dictates the sampling rate and

memory pre-allocation estimations.

 Digital communication research demands the ability to simulate advanced

phenomena such as nonlinear effects, distortion in electromagnetic propagation,

crosstalk, various models of noise and dispersion.

The contemporary computer applications often presume the presence of user-friendly

way to control the execution flow. To enable a user to visualize and simulate a system quickly,

the modeling and design programs usually have the following features (Keiser, 2000):

www.manaraa.com

38

 The capability for the user to interact with the components during test run. The

simulation may need to be adjusted or the combination of the parameters may

need to be corrected. To make this possible at the early stages is critical for the

efficiency of the simulation process. Early implementation of ISE application

proposes fully interactive simulations sub-cycles that allow changing not only the

test parameters, but also adding or removing components while the simulation run

is under way (see Figure 25).

 The ability to create a system schematic based on the pre-defined libraries of the

widgets or graphical icons. The graphical user interface (GUI) makes it easy to

create various system components and the instrumentation (data sinks, spectrum

analyzers, etc.) CEF proposes objects like CEFAnalyzer1D, miscellaneous

attachments to the CEFAntenna device, as well as wide range of spectral analysis

implementations. For example, there is an implementation of floating window

FFT, it has the implementation of the generation of an image file for further data

digging.

 The fundamental set of statistical-analysis, digital signal processing and display

tools.

 Common visualization tools include eye diagrams and error-rate curves, the way

to generate and describe the waveforms, CDMA sequences electrical and optical

spectra, etc. (see Figure 31)

An advanced simulation tool at some point is required to have the level of control not

achievable by standard buttons or configuration files. The best way to program the model is to

use a programming language. Commercially available simulators often focus on so-called visual-

www.manaraa.com

39

programming languages, such as LabVIEW(R), etc. In these languages, system components

(transmitters, modulators, receivers and the connecting channels) are selected from a module

library or programmed icons that have bidirectional or unidirectional interfaces (electrical,

optical, etc.). Associated with each icon is a set of the operational parameters.

Figure 22. Performance evaluation of a number of nodes by the same tier jobs. (Y axis - job
tier, 0 for everybody, X axis - total time per job)

Normally, a menu window is where the user specifies the values and the desired interface

characteristics of a component. Sometimes in addition to the preprogrammed building blocks,

users can create their own custom devices with either the underlying software code (a version of

C or C++ for example) or the graphical-programming language. CEF has C++ as its underlying

language and the mechanism to include the custom functionality extended to the ability of

0 200 400 600 800 1000 1200
-0.5

0
0.5

bp
as

Performance Record. Tier 0.

0 200 400 600 800 1000 1200
-0.5

0
0.5

bc
ha

0 200 400 600 800 1000 1200
-0.5

0
0.5

bd
ia

0 200 400 600 800 1000 1200
-0.5

0
0.5

bd
ol

0 200 400 600 800 1000 1200
-0.5

0
0.5

bm
on

0 200 400 600 800 1000 1200
-0.5

0
0.5

bw
fa

0 200 400 600 800 1000 1200
-0.5

0
0.5

X, Total Time

bf
ox

www.manaraa.com

40

creating completely new blocks or simulation entities. The proposed hierarchy of the objects

allows extremely flexible integration of the modules.

Figure 23. Performance of same node for various tier jobs. (Y axis - job tier (difficulty), X
axis - total time per job)

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

bd
ia

Performance Record for bdia.

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

bf
ox

Performance Record for bfox.

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

bd
ol

Performance Record for bdol.

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

bp
as

Performance Record for bpas.

www.manaraa.com

41

Figure 24. Performance evaluation for different tier jobs.

There are several fundamental definitions that define the basic structure of an object in

the proposed ISE architecture. Most of the objects are inherited from C++ class CEFBase.

Functionality dictates several layers of encapsulation. Once a component has been assigned some

behavior, it is upgraded to a class CEFDevice, that has the application programming interface to

methods like Process(). Those can be called at any other entry point and expect the parameters

defined in the interface used. For example, a result of an algorithm applied to a one-dimensional

signal, could be another one-dimensional signal class. So, the group of such devices is descended

from class CEFDevice_1D_1D. The other combinations of the devices, including multiple input

0 200 400 600 800 1000 1200
0
2
4
6

bp
as

Performance Record. Tier 2

0 200 400 600 800 1000 1200
0
2
4
6

bc
ha

0 200 400 600 800 1000 1200
0
2
4
6

bd
ia

0 200 400 600 800 1000 1200
0
2
4
6

bd
ol

0 200 400 600 800 1000 1200
0
2
4
6

bf
ox

X, Total Time

0 200 400 600 800 1000 1200
0
2
4
6

bp
as

Performance Record. Tier 3

0 200 400 600 800 1000 1200
0
2
4
6

bc
ha

0 200 400 600 800 1000 1200
0
2
4
6

bd
ia

0 200 400 600 800 1000 1200
0
2
4
6

bd
ol

0 200 400 600 800 1000 1200
0
2
4
6

bf
ox

X, Total Time

0 200 400 600 800 1000 1200
0
2
4
6

bp
as

Performance Record. Tier 5

0 200 400 600 800 1000 1200
0
2
4
6

bc
ha

0 200 400 600 800 1000 1200
0
2
4
6

bd
ia

0 200 400 600 800 1000 1200
0
2
4
6

bd
ol

0 200 400 600 800 1000 1200
0
2
4
6

bf
ox

X, Total Time

0 200 400 600 800 1000 1200
0
2
4
6

bp
as

Performance Record. Tier 6

0 200 400 600 800 1000 1200
0
2
4
6

bc
ha

0 200 400 600 800 1000 1200
0
2
4
6

bd
ia

0 200 400 600 800 1000 1200
0
2
4
6

bd
ol

0 200 400 600 800 1000 1200
0
2
4
6

bf
ox

X, Total Time

www.manaraa.com

42

parameters and multiple output parameters, have their own definitions and the API to assure the

ability to interexchange one device for another.

Figure 25. The lifecycle of digital communication simulator.

The life cycle of a root-level CEF ISE 3.0 object is shown on Figure 25. The proposed

simulation sequence is described in term of the following definitions:

 Object's Birth - the time when the object is active.

 Object's Death - the time of detaching of the object from the parent object.

 Parent object - the object that has the current object as its component or

parameter.

 Component - an object that performs some action. E.g. object Router has

components Transmitter and Receiver.

 Parameter - an object that contains data. This could be Integer, Float, String,

Image, Video, one- and two-dimensional signals, user-defined void pointer, etc.

www.manaraa.com

43

Cooperative positioning simulation

Many corporations and research agencies test the feasibility of using a cooperative team

of autonomous or remotely-controlled vehicles to perform tasks previously done by a human

operator. In many applications, particularly military or including hazard environment, the choice

of unmanned vehicles is strongly encouraged by government regulations. This tendency

introduces new opportunities to the scientific community working on the positioning

technologies. For example, as a part of a project for the Defense Advanced Research Projects

Agency, Scandia National Laboratories’ Intelligent Systems & Robotics Center developed a

Differential Global Positioning System (DGPS) leapfrog capability that allows two or more

vehicles to alternate sending DGPS corrections. Using this leapfrog technique, a group of

autonomous vehicles can travel 22.68 kilometers with a root mean square positioning error of

only 5 meters (JPEO, 2007).

Global Positioning System (GPS) as well as some other systems for determination of the

device coordinates, is based on the time difference of arrival of beacon signals from precisely

synchronized broadcasting stations with known location or pre-determined trajectory (satellites).

The primary sensor in the positioning device is an RF antenna that collects the data(Tsui,

2000). The positioning via calculations of the time delay is possible due to the finite speed of the

message. In this case the receiving device can find the distance to the transmitting device. Figure

26 shows the general case, when both the beacon and the positioning receivers are moving. For

the positioning applications it is important that the values of the perceived distances, called

pseudo ranges, are related to the SVs that are not in the same plane. The precision of the user

location in the perpendicular direction will be very inaccurate for the cases of beacons and the

www.manaraa.com

44

receivers moving in the same direction. It demonstrates Doppler's effect very good, allowing

analyzing the pseudo range accuracy.

Figure 26. Basis for positioning using message-transmitting/receiving.

Acoustic or RF, cooperative positioning is a special case of digital communication

simulations. GPS positioning are in effect a radio transmitting/receiving systems. With the

current trend of all technology to shift from analog to the digital domain, the software radio

could overcome many of the traditionally analog components. The open source community has

its software radio branch. GNU Software Radio (FSF GNU, 2007) has many advantages, starting

from the fact that it is an open architecture that eliminates royalties and license fees.

The network emulator can significantly improve the coverage and efficiency of testing,

developing, and debugging cell phone software. Coverage is increased, since the network

emulator can test fault and error conditions that are difficult or impossible to generate on real

hardware (e.g. setting a particular level of QoS quality of service). It can also help analyze and

test the services that have not been deployed in hardware, new versions of CDMA, Mobile IP,

and next generations of mobile devices. (Harrison, 2004)

www.manaraa.com

45

The proposed emulator, based on CEF library, at this point uses software interfacing to

the devices (that may later be implemented in hardware). Some other emulators, for example,

commercially available Symbian cell phone emulator, are mainly focused on the delivering

hardware (new mobile devices) to the market. The Symbian network emulator has three

components. First of them is The Emulation Environment, it is comprised of a set of PCs that

emulate the external network. The purpose of those threads or processes is to function as the

operator's network and attached data networks. This environment can emulate the behavior of the

air-interface on data traffic, control services such as Mobile IP, PPP, TCP/IP or the others that

run on top of them. The initiation and receiving of the connections has been implemented and

can be monitored.

Cooperative positioning presumes that there are multiple participants on the field. That is

why the uniform network node has been introduced. In the test system implementation, it is an

autonomous vehicle that has all the components on-board. With well organized simulation

environment it is relatively easy to replicate the instances of the Node class and have as many

cooperating participants as the computer's memory allows.

Figure 27. Wireless data transmission spectrum example

A simple layout with less than a dozen participants is shown on Figure 31. Some of the

simulations have to have the obscure line of sight topography. In those cases it is more time

consuming to generate the trajectories of the test subjects. One has to create and define the

www.manaraa.com

46

timing, schedule all the turns and speeds. Example of a local test is presented on Figure 27, it

shows an example of a spectrum snap shot of a simulation. The frequency hopping can be seen,

as well as slight signatures of the boundaries of the synchronizing messages.

Computer-aided component design tools can offer a powerful way to assist in analyzing

the design of a component, or a network before costly prototypes are built, or even instead of

building a prototype. Important points that need to be considered are the approximations and

modeling assumptions made in the software design. Most telecommunication systems are

designed with several decibels of safety margin. That is why reasonably accurate approximations

for calculating the operating behavior are not only acceptable, but also in most cases necessary to

adhere to the feasible computation times.

Image recognition, evolutionary algorithms and sensor networks

This chapter briefly describes several concepts of artificial intelligence that were made

possible with the introduction of powerful computers. They are made available to wider

consumer groups with feasible implementations of distributed computation frameworks. Fuzzy

logic is itself a tool for other AI techniques and algorithms. The areas of evolutionary algorithms,

neural networks and artificial intelligence in general are the ones where parallel computations

increase overall performance to unprecedented levels. Some of the internationally known

projects connect hundreds and thousands of computers to process one single task. SETI,

currently the largest distributed computing effort, linked over 3 million users (SETI Project).

Computer Engineering Framework (CEF) has project Rozum, which is working on the human-

machine linguistic dialog. Evolutionary approach is an interesting tool for solving complicated

tasks where human might not be present and critical decisions have to be made fast.

www.manaraa.com

47

Figure 28. CEF-based virtual robot combat. Top view and each robot's views are shown.

Evolutionary algorithm approach offers stochastic, but directed, numerical search method

for the best template of behavior of autonomous vehicles capable of information exchange

among themselves. Evolutionary Algorithms and Genetic Algorithms in particular are known to

be able to produce good results in tasks where regular approach is complicated or not feasible.

The standard cycle includes the selection, crossover, mutations and reproduction.

Optical recognition is an essential part of an autonomous vehicle. Figure 29 shows the

training set for the image identification of the bar-code vehicle tags. With the virtual autonomous

vehicle moving in the simulated environment, it accumulates all the necessary angles and

lighting conditions for the tests to be as close to the real deployment as possible. The codes in

this example are 3 7-digit stripes painted over two cylindrical beacons, visible above the vehicle.

Sometimes radio silence is preferable, so optical identification used.

www.manaraa.com

48

Figure 29. Example of bar-code type of vehicle ID tags at different angles.

www.manaraa.com

49

CHAPTER 9. IMPLEMENTATION PLATFORMS, LINKERS AND
COMPILERS

Architecture and implementation are two different things

There is undisputed difference between architecture and implementation (Nguyen, et al.,

2007). This dissertation introduces the proposed FL load balancing mechanism, and a number of

aspects of the simulation environment this FL mechanism would be most effective in. Software

embodies thoughts, ideas, design, implementation; each of which is an intellectual (and creative,

not mechanical) process. Software engineering could be put even on another evolutionary level

from other intellectual processes (like composing music or painting) because beyond a certain

level of size and complexity, it is also necessarily a team activity (Morris, 2007).

To explain the architecture better, some implementation details are worth mentioning -

according to CMMI models (Chrissis, et al., 2007), the process of implementation could bring

positive feedback to the original design and the theoretical research.

Figure 30. The test grid, side by side there are around half of a hundred CPU blocks
connected via network switches.

The consensus of majority of software producing entities is that the block structure is the

preferable strategy for effective software development. Regardless of the size of a team of

collaborators, or a number of contributors to an open-source project, the functionally self-

www.manaraa.com

50

contained parts are often separated into reusable code, sometimes referred to as "toolkits",

"toolboxes"(Panchul, et al., 17-21 April 2006), or even "tinkertoys"(Devine, et al., 2005). It is

best accomplished when adequate design is done from the very beginning of project.

About software development.

Different versions of UNIX operating system were used. Some code was written for Sun

OS, HP-UX, significant amount of user-interface utilities was written for Windows, and most of

the system is on Linux RedHat 7.2, 9.0, Fedora, and SuSE 11.1 (64 bit).

A few words have to be said about the development environment in general. Beyond

certain level of complexity, designing software is a big logistical task. It requires maintaining

well-defined procedures of the source code version control. The introduction of new structural

and algorithmic modifications should be done after thorough analysis as to which portions of the

system are being affected and how.

In academic world it is very difficult because most of the programmers are not

professional and keeping track of their modifications is not always possible. More often than not,

when a graduate or undergraduate student joins a development team and starts writing some

block of a system, he or she implements the functionality in the "quick and dirty" way, violating

many rules of good style and focusing just on making things work. For small projects it may be

acceptable, but for bigger projects, this means leaving a time-bomb for many future

modifications. Disorder in naming conventions, static variables and dynamic memory usage, as

well as the logical inconsistencies, might produce a number of critical, hard-to-catch, errors that

will puzzle many collaborators.

The learning curve of the newcomers to software project in academia is often cut short

because the students graduate and may leave more loose ends than robust re-usable code.

www.manaraa.com

51

The safe haven for non-professional software development is the open-source

community. For an open source project to survive, it has to have or acquire highly motivated

group of collaborators, the core development team that oversees the evolving of the code, and

controls the modifications and distributions.

In professional software development things are relatively easier to organize. Many

people in industry came to accept the usefulness of the formally identified development cycles

and at this point most of the big publicly traded companies received maturity level certifications

(Chrissis, et al., 2007).

Computer Engineering Framework (CEF) is the project that, at this point, has already

underwent several re-designs and absorbed both professional software development experience

and educational one. Portions of the project were written to facilitate exercises or demonstrations

in programming techniques, white others are in the prototype stage. The strategic plan is to keep

the tools and implementations platform-independent and scalable. (Abbot, et al., 2010)

Figure 31. Overview of the tree of objects(left) and MFC views for signals(right).

www.manaraa.com

52

Visual C++ .NET

As mentioned ago, user interfaces were often oriented on Windows operating system.

Visual C++ .NET was used as the Integrated Development Environment (Microsoft Inc.). And

it's basic GUI structure MFC (Figure 31).

In recent years, the virtualization of the cloud computer nodes has been moved to the

hardware of the personal computers and servers. As with some RAID implementations,

Microsoft is teaming up with the vendors to make the virtualization more effective.

Symbian 60 SDK, Carbide C++

We researched Symbian smartphones as possible platform for implementation of some of

the techniques. Indeed, smartphones are potential processing elements (PEs) within a distributed

cluster. In this chapter I briefly mention some of the tools for software development on Symbian

OS. Some plug-ins for MS Visual C++ were used, and later, Carbide C++.

Figure 32. Carbide C++ IDE. Integration of a user method into MER 3.0

www.manaraa.com

53

Symbian OS architecture influenced the evolution of CEF library. Remarkably, it is not a

coincidence that the embedded software for cell phones eventually became a fully functional

operating system. This fact validates the point of view that any big system, when its design is

driven by the functionality, sooner or later transforms into a clone of UNIX (in a sense of having

file systems, inter-process communications, etc.)

Overview of CEF structure

The software development is big area on its own, but when it comes to the engineering

applications, every commercial or academic entity faces a choice of either writing proprietary

programs from ground up, or using already available commercial packages. For the high level

state of art implementations it is often preferable to write code from scratch. It requires more

organizational efforts, manpower and money, but it sometimes delivers higher rewards

too(Panchul, et al., 2010).

For any software package, it is important to develop a type-safe interface between the

users of the package and its providers. This type-safety should not compromise the effectiveness

of the library, that is, not to impose significant overheads in run-time or space on the user

(comparing to the hand-written code) (Stroustrup, 2000).

It is well known that language shapes the way we think and determines what we can think

about. Arguably, it is the object-oriented programming that makes artificial intelligence practical.

Figure 33 shows some of the blocks of CEF. The connections among them are omitted

not only due to the lack of space, but also because these modules are building blocks of bigger

systems. Computer Engineering Framework is growing. The term 'framework' is usually means a

component that defines an abstract interface which provides a runtime loading and management

mechanism for locating and loading plug-in component that provide concrete implementations

www.manaraa.com

54

for its interface (Morris, 2007). In 'CEF' word 'framework' also has second meaning -

collaboration among researchers, because making software (for any area, not necessarily

numerical simulation) is not only an engineering process, but also a sociological or cultural

phenomenon (McCarthy, 1995). That is, CEF does not have one narrow intended use, but rather

it is a think tank for all existing and future technologies.

Figure 33. Partial block diagram of CEF.

Many of the blocks rely on each other and there are some basic objects that are used by

most as parent classes.

C++'s support for design and programming has improved dramatically over the

years(Stroustrup, 2000), and when it comes to efficiency of the code, C++ becomes the natural

choice. On one hand, the very idea of classes, encapsulation, and polymorphism, is reminiscent

of the way humans visualize the objects and their inter-relationships. This makes C++ suitable

for high level programming. On the other hand, the roots of C++ are going to C language and,

www.manaraa.com

55

just underneath C, Assembler. So, since C++ is a superset of C, it is also suitable for low level

programming and fine-tuning of the machine code for a particular CPU or computer architecture.

ISE is a comprehensive simulation tool, intended to run tests of augmented reality

technologies as well as a wide range of video processing. For example, algorithms for dynamic

overlapping and non-overlapping camera networks (Junejo, et al., 2007), or three-dimensional

image mosaicing using multiple projection planes (Chon, et al., 2007).

Figure 34. Prototype of Arduino microcontroller-based Ethernet robot.

The Internet-based deployment could be a convenient way to connect the sub-clusters.

Figure 19 shows a generated server performance monitoring window that could be made visible

to the cluster administrators via HTTP.

Hardware remarks

Implementing a prototype cloud computing cluster exposes many unexpected challenges.

One of the ways to cut costs for the system as a whole is to cut costs of its components. The

high-end computer hardware cost is growing or staying the same over time, while the low-end

equipment is often available for free. The issue is to assess the ratio of performance per cost plus

cost of maintenance. If a computer is producing very low operations/second, but still using same

www.manaraa.com

56

amount of electricity, it has to be upgraded. Good example of low cost clustering is to combine

the hardware parts of two computers to even out their performance, hence make them more

suitable for parallel tasks. Another good example is network equipment. There are substantial

advantages in custom crimping network cables.

Microcontrollers cannot compete with servers as far as performance is concern: the CPU

and memory size are very different. However, in sensor networks, or swarms of autonomous

robots, the pre-processing of data at the location would take some of the load from the system. In

recent years microcontrollers and tools for their programming become more and more

affordable. Figure 34 shows a proto-board with network-connected Mega2560, a version of

Arduino board released with smaller board Uno. It features the Atmega2560, which has twice the

memory, and uses the ATMega 8U2 for USB-to-serial communication microcontroller. The

wireless add-ons and numerous open-source libraries are also available(Arduino).

www.manaraa.com

57

CONCLUSION AND FURTHER RESEARCH

This dissertation proposed a concept for dynamic load balancing in distributed

environments; with the focus on tasks related to video generation and virtual reality simulations.

The fuzzy logic approach was proven to be effective when the constraints of the system are

complicated and the load is not known in advance. The overall usage of Fuzzy logic increased

the control over the functioning of the distributed cluster, and solved some of the issues related

to the data migration and message passing.

The test runs showed improvement over other implemented methods. Among the

measurable parameters, the variance of the individual job portions was decreased 78%, from 374

to 294. Other improvements were detected in smaller memory segmentation and shorter tasks

backlogs.

The overall usage of Fuzzy logic increased the control over the functioning of the

distributed cluster, and solved some of the issues related to the data migration and message

passing. This enhancement opened the possibilities of commercial video rendering similar to

HiPEC project (HiPEC, 1999), (Lüling, et al., 1998). CEF will continue creation of intelligent

load balancing strategies for augmented reality comprehensive simulators. The possible

expansion includes utilization of middleware implementations for distributed simulation

applications (Wang, et al., 2009).

Future research includes further expansion of the algorithm to other aspects of digital

simulations, further capitalizing on multi-processing and multi-threading, and possible hardware

versions of the described techniques.

www.manaraa.com

58

APPENDICES

Appendix A. An example of a source code for the proposed computer language

 Below is an example of the proposed emulator microcontroller assembly language. The

code calculates a number pi with any given precision.

Add up sum of the series for pi/4 = sum((-1)^(n+1)*1/(2*n-1))

The following is an initialization and the first iteration:
pushs 0
pushs 1
pushf ; initial sum, 0.0 pi/4 = sum((-1)^(n+1)*1/(2*n-1)= sum(2/(16k^2-16k+3))
pushs 1 ; current number
pushs 2 ; ------------------------ NEW CYCLE
pushs 1 ; denominator
pushf
pushs 3
pushs 1
pushf
dups ; preserve k
pushs 1
pushf
pushs -16
pushs 1
pushf ; -16 in F
mulf
addf ; -16k+3 in F
dups ; preserve k
pushs 1
pushf
dupf
mulf ; k^2
pushs 16
pushs 1
pushf
mulf ;
addf ; 16k^2-16k+3 in F
divf ; 2/1 div 16k^2-16k+3 in F
addf ; sum is ready
pushs 1 ; incremented k
adds ;
dupf ; preserve sum
pushs 4
pushs 1
pushf
mulf ; show 4*sum
clrl
showfieee 0
popf ; we showed it alright
;

After 101 iterations the calculated number is:

3.1366419792...

- it is a very close approximation of 3.1415...

www.manaraa.com

59

Appendix B. An example of object-oriented smartphone implementation

Computer Engineering Framework was made portable (Panchul, et al., April 2006). Its

portions have been tested in the proposed Symbian-based system Mobile Electrical-engineering

Framework (MEF).

MEF allows performing simulation in mobile environment or server-based collaborating

network (Panchul, et al., September-October 2008). To facilitate the development process, there

are several pre-designed templates that simplify programming. First of all, the algorithmic block

needs an input and output. The input signal is the regular Image 1 tab (see Figure 32 for a screen

shot of the application) content with all the properties and access application programming

interface (API). The output of the algorithmic block is also a signal. Its dimension and properties

are up to the algorithm itself.

There are a number of steps for attaching of the algorithmic block to the GUI structure of

the application. The algorithm implementation a regular user is most likely to write will have a

number of global variables or constants, maybe some auxiliary functions or initializing

procedures. To hedge the system from all the problems, the algorithmic block is required to be

derived from the CMEFProcessor class. It has abstract method Process():

virtual int Process(const CMEFSignal *inputsignal, CMEFSignal *Outputsignal)=0;

It is this method that after the instantiation is being called by the GUI class handling the

events from the View. The minimalist definition of a custom algorithm implementation may look

like the following:

#ifndef __COLOR_CUSTOM1_H__

#define __COLOR_CUSTOM1_H__

#include "MEFProcessor.h"

#include "MEFSignal.h"

class CMEF2AppUi;

class C2D_ColorCustom1 : public CMEFProcessor

{

www.manaraa.com

60

public:

 C2D_ColorCustom1(CAknViewAppUi* myiUIptr);

 virtual ~C2D_ColorCustom1(void);

 virtual int Process(const CMEFSignal *inputsignal, CMEFSignal *outputsignal);

};

#endif

The internal variables and static data are added depending on the nature of the simulation.

The processor class is made into the design structure called singleton. One instance of it is

created and later re-used at every function call. In dealing with signal processing it saves

significant time and resources, especially for the algorithms containing constant arrays with

lengthy sequences that are being correlated during the block run.

The minimalist implementation of the Process() method looks as follows:

int C2D_ColorCustom1::Process(const CMEFSignal *inputsignal, CMEFSignal *outputsignal)

{

 if((!inputsignal)||(!outputsignal))

 {

 User::Leave(KErrGeneral);

 }

 if(inputsignal == outputsignal)

 {

 CMEFSignal *mytmpsignal;

 TInt myres;

 mytmpsignal = CMEFSignal::NewL(

 -------------Creating a copy-------------

);

 mytmpsignal->AssignL(inputsignal);

 myres=Process(mytmpsignal,outputsignal);

 delete mytmpsignal;

 return myres;

 }

 // Check the aspect ratio if necessary

 if(inputsignal->NumberOfSamplesX != inputsignal->NumberOfSamplesY)

 {

 User::Leave(KErrGeneral);

// e.g. "Images are expected to be with the same width and height, equal to a power of 2."

 }

 outputsignal->InitL(

 -------- define the output signal -----------

);

// MessageBox(NULL,"the function is under reconstruction!","",MB_OK);

 unsigned int thewholethingi=0;

 for(unsigned int j=0;j< inputsignal->NumberOfSamplesY;j++)

 for(unsigned int i=0;i< inputsignal->NumberOfSamplesX;i++)

 {

 outputsignal->SamplesRe[thewholethingi]=

 inputsignal->SamplesRe[thewholethingi]

+(thewholethingi%33);

www.manaraa.com

61

 thewholethingi++;

 }

 outputsignal->AdjustMaxMinL(); //RecalculateMaxMin();

return 0;

}

There are several major parts that define the way a user interacts with an application:

description of the menu hierarchy, internationalization database, handling of the user events.

The added algorithms are attached to appropriate menu commands that act on one or

more tab images. The command should be added to the enumeration declaration of the

commands being handled. It is done like so:

enum TMEF2CommandIds

 {

 EMEFHelp=1,

....

 EMEFRetouchColorCustom1_1,

};

Then the text string that is to appear at the menu item text should be defined in .loc file.

For example:

#define qtn_mef_custom1_text "User method1"

Eventually, the resource needs to be created:

RESOURCE MENU_PANE r_mef_retouch_color_submenu

 {

items ={...

 MENU_ITEM { command = EMEFRetouchColorCustom1_1; txt = qtn_mef_custom1_text; },

... };

}

This command is handled in the base class of the View panels:

void CMEF2ViewBase::HandleCommandL(TInt aCommand)

Like so:

case EMEFRetouchColorCustom1_1:

 if(iSignal)

 {

 ((CMEF2AppUi*)AppUi())->GetInstance2DColorCustom1()->Process(iSignal, iSignal);

 }else

 {

 _LIT(mytxt,"Load the image first!");

 ((CMEF2AppUi*)AppUi())->OutputErrorNote(mytxt);

www.manaraa.com

62

 } break;

The instance of the custom1 algorithm is defined in the separate file.

The newly created class definition .h file need not be included into the project

specification .mmp file of the application. Instead the source code .cpp file should be put via the

following statement:

SOURCEPATH ..\src

SOURCE ColorCustom1.cpp

There are several ways how to create the binary file and how to debug the obtained

software using the command line or various IDE. Here are the steps to get all necessary

components running using Microsoft Visual C++ .NET:

Open the command line window and go to the following directory:

<SDK_installation_directory>\Series60Ex\MEF2\group\

Create the Microsoft Visual Studio .NET solution and project files: makmake mef2.mmp

vc7. This will create the mef2.sln solution file and mef2.VCPROJ project file in the mef2\group\

directory.

Start the Microsoft Visual .NET IDE and open the solution file, mef2.sln, by selecting

File > Open Solution from the menu bar. The Visual C++ IDE opens a new project window for

the project, the MEF2 project window.

Build the application from the Microsoft Visual .NET IDE. Select Build > Build Solution

from the Main menu bar (or press Ctrl+Shift+B). This will compile the source files and link the

object files into a udeb build of the MEF2 application. The udeb build enables you to view the

application in the emulator.

www.manaraa.com

63

Start the emulator from the Microsoft Visual .NET IDE. Select Debug > Start from the

Main menu bar. When starting the first time, the Executable For Debug Session dialog appears.

Browse to the <SDK_installation_directory> and locate \epoc32\release\wins\udeb\epoc.exe.

There are additional steps as to how to install the application into the cell phone. The

manufacturers of the phones provide this information. It could be done via Bluetooth, Internet or

any other data transmitting technologies.

www.manaraa.com

64

Appendix C. Abbreviations and Acronyms

 Below are some of the abbreviations used in this Dissertation:

 AI Artificial Intelligence.

 ANFIS Adaptive Neuro-Fuzzy Inference System.

 API Application Program Interface.

 BOA Bisector Of Area.

 CE Computational Element.

 CEF Computer Engineering Framework.

 CF Core framework.

 COA Centroid Of Area.

 CORBA Common Object Request Broker Architecture.

 CPU Central Processing Unit.

 CTS Clear To Send.

 DGPS Differential Global Positioning System.

 DSP Digital Signal Processing.

 EDA Electronic Design Automation.

 EA Evolutionary Algorithm.

 EOM End Of Message.

 FFT Fast Fourier Transformation.

 FIS Fuzzy Inference System.

 FIFO First In First Out.

 FLC Fuzzy Logic Controller.

 FPGA Field Programmable Gate Array.

 FSF Free Software Foundation.

 GA Genetic Algorithm.

 GNU Recursive “GNU is Not UNIX”.

 GPP General Purpose Processor.

 GPS Global Positioning System.

 GPSTk GPS Tool Kit.

 GPU Graphic Processing Unit.

 GUI Graphical User Interface.

 GUI control an input field, check-box, scroll-box, tree-view, buttons, etc.

 HDL Hardware Definition Language.

 HTTP Hyper-Text Transmission Protocol.

 HW Hardware.

 ISE Initiative Software Earth.

 ICWG Interface Control Working Group.

 IDE Integrated Development Environment.

 IDL Interface Definition Language.

 IO Input/Output.

 IP Internet Protocol.

www.manaraa.com

65

 JPEO Joint Program Executive Office.

 JTRS Joint Tactical Radio System.

 LabVIEW Laboratory Virtual Instrumentation Engineering Workbench (R)

National Instruments Inc.

 LSB Least Significant Byte.

 MF Membership Function.

 MHAL Modem Hardware Abstraction Layer.

 MOM Mean Of Maxima.

 MSB Most Significant Byte.

 OCR Optical Character Recognition.

 OOP Object Oriented Programming.

 PE Processing Element (a node in a multicomputer or multiprocessor)

 PID Proportional-integral-derivative controller.

 QoS Quality of Service.

 PDA Photonic Design Automation.

 RF Radio Frequency.

 RPC Remote Procedure Call.

 RTS Request To Send.

 SA Simulated Annealing.

 SCA Software Communications Architecture.

 SETI Search for Extra-Terrestrial Intelligence.

 SOAP Simple Object Access Protocol.

 SPICE Simulation Program for Integrated Circuits Emphasis.

 SPST Single-Pole, Single-Throw (on/off switch)

 SPW Signal Processing Worksystem (R) CoWare Inc.

 SV Space Vehicle.

 SW Software.

 TCP Transmission Control Protocol.

 TSP Traveling Salesperson Problem.

 UML Unified Modeling Language.

 VHDL VHSIC Hardware Description Language.

 VHSIC Very High Speed Integrated Circuit.

 VPU Virtual Processing Unit.

 VCS Version Control System

 WF Waveform.

 XML Extensible Markup Language.

www.manaraa.com

66

BIBLIOGRAPHY

Papers published based on the research presented.

Journal

 A.Panchul, D.Akopian, M.Jamshidi "Temporal-Spatial Fuzzy Logic Algorithm for

Effective Dynamic Load Balancing in Distributed 3D Graphics Engine“ Accepted for

publication in International Journal System of Systems Engineering

Conferences

 A.Panchul, D.Akopian, M.Jamshidi “On Object-Oriented Implementation of a Soft

Computing Toolbox for CEF” World Automotion Congress(WAC), September 2010.

 A.Panchul, D.Akopian, P.Chen, "Development of Smartphone-Based Public Vigilance

Systems. WACONG, Hawaii September 2008

 A.Panchul, D.Akopian, "Development of educational applications for smartphones“

2008 ASEE Annual Conference & Exposition June 22-25 Pittsburgh, PA

 A.Panchul, D.Bhupathiraju, S.Agaian, D.Akopian, "An imaging toolbox for smartphone

applications", Mobile Multimedia/Image Processing for Military and Security

Applications, SPIE Defense and Security Symposium, 17-21 April 2006, Orlando, FL

 P.Sagiraju, A.Panchul, GVS Raju, D.Akopian, "Development of Software GPS+

Receiver Testbed," IEEE PLANS'2006 Conference, April 25-27, San Diego, CA.

 A.Panchul, D.Akopian, "Educational Applications Development for Smartphones" UTSA

ESB '2007 Conference November 9, 2007

 A.Panchul, D.Akopian, "On porting computer applications into Symbian cell phone

platform", IEEE Region 5 Conference, April 2006, San Antonio, TX.

REFERENCES

A.L.I.C.E. Project An Educational Software that teaches students computer programming in a

3D environment. [Online]. - 2010. - www.alice.org.

Abbot M. and Fisher M. The Art of Scalability: scalable web architecture, processes, and

organizations for the modern enterprise [Book]. - [s.l.] : Pearson Education, 2010.

Apollo Photonics, Inc., Ontario, Canada [Online]. - 2010. - www.apollophoton.com.

Arduino Arduino Hardware [Online]. - 11 01, 2010. - http://arduino.cc.

Boost www.boost.org [Online]. - 2010.

Bronevich A. and Meyer W. Load balancing algorithms based on gradient methods and their

analysis through algebraic graph theory [Journal]. - [s.l.] : Academic Press, Inc. Orlando, FL,

USA, 2008. - Issue 2 (February 2008) : Vol. Volume 68.

www.manaraa.com

67

Brown D.C. A Bitrate Control Algorithm for the Berkeley MPEG-1 Video Encoder. Report No.

UCB/CSD-97-937 [Report]. - Berkeley : EECS University of California, 1995.

Cao J. [et al.] Grid Load Balancing Using Intelligent Agents [Journal] // Future Generation

Computer Systems. - January 1, 2005. - No.1 : Vol. 21. - pp. 135-149.

Catalyurec U.V. and Aykanat C. PaToH: A Multilevel Hypergraph Partitioning Tool, Version

3.0 [Report]. - Ankara, Turkey. : Bilkent University, Dept. Computer Engineering, 2009.

Catalyurek U.V. [et al.] Hypergraph-based Dynamic Load Balancing for Adaptive Scientific

Computations [Conference] // Parallel and Distributed Processing Symposium. - [s.l.] : IPDPS

2007 IEEE International, 2007.

Chon J. [et al.] Three-Dimensional image mosaicking using multiple projection planes for 3-D

visualization of roadside standing buildings. [Journal] // Transactions on Systems, Man, and

Cybernetics.. - [s.l.] : IEEE, August 2007. - 4 : Vol. vol.37. - pp. 771-783.

Chrissis M., Konrad M. and Shrum S. CMMI, Guidelines for Process Integration and Product

Improvement [Book]. - Boston, MA : Pearson Education, Inc., 2007.

Devine Karen and Hendrickson Bruce Tinkertoy Parallel Programming: A Case Study with

Zoltan. [Journal]. - [s.l.] : International Journal of Computational Science and Engineering,

2005. - No 2/3/4 : Vol. Volume1.

Doulamis A.D., Doulamis N.D. and and Kollias S.D. An Adaptable Neural-Network Model for

Recursive Nonlinear Traffic Prediction and Modeling of MPEG Video Sources. [Journal] //

IEEE Transactions on Neural Networks. - 2003. - No.1 : Vol. 14.

Doulamis N.D. [et al.] A Combined Fuzzy-Neural Network Model for Non-Linear Prediction of

3-D Rendering Workload in Grid Computing. [Journal] // IEEE Transactions on Systems, Man,

and Cybernetics. - April 2004. - No.2 : Vol. 34.

Fawwaz T. Ulaby Michel M.Maharbiz Circuits [Book]. - [s.l.] : National Technology and

Science Press, 2009.

Feddema J., Lewis C. and LaFarge R. Cooperative Sentry Vehicles And Differential GPS

Leapfrog [Article]. - 2000.

FSF GNU GNU Software Radio Documentation [Book]. - [s.l.] : FSF, 2007.

FSF GNU Project Software Radio. [Online]. - http://www.gnuradio.org.

Gerbec D. [et al.] Determining the load profiles of consumers based on fuzzy logic and

probability neural networks [Journal]. - [s.l.] : IEE Proc.-Gener. Transm. Distrib., 2004. - 3,

May : Vol. 151.

GNU, Free Software Foundation [Online]. - 2010. - www.gnu.org.

www.manaraa.com

68

GPSTk GPSTk website [Online]. - 2009. - www.gpstk.org.

Guo J. [et al.] Combination Load Balancing for Video-on-Demand Systems [Journal]. - [s.l.] :

IEEE Transactions on Circuits and Systems for Video Technology, 2008. - 7, July : Vol. 18.

Harrison R. Symbian OS C++ for mobile phones. Volume 2. Programming with Extended

Functionality and Advanced Features. [Book]. - [s.l.] : John Wiley & Sons Ltd, 2004.

HiPEC HiPEC, High Performance Computing Visualisation System supporting Networked

Electronic Commerce Applications. [Report] : Public Final Report of ESPRIT HPCN PST

Activity. - [s.l.] : AXCENT GmbH Dr.Karsten Morisse, Technologiepark 13, D-33100

Paderborn, 1999.

Hoare C.A.R. Communicating Sequential Processes [Book]. - [s.l.] : Prentice Hall International

(original 1985), 2004.

Jamshidi M. Large-Scale Systems: Modeling, Control, and Fuzzy Logic [Book]. - Englewood

Cliffs, NJ : Prentice Hall, 2007.

Jamshidi M., Vadiee N. and Ross T. Fuzzy Logic and Control: Software and Hardware

Applications. [Book]. - Englewood Cliffs, NJ : Prentice Hall, 2003.

Jang J and Sun C. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning

and Machine Intelligence. [Book]. - Upper Saddle River, NJ : Prentice-Hall, Inc., 1997.

Jiang Y. and Jiang J. Contextual Resource Negotiation-Based Task Allocation and Load

Balancing in Complex Software Systems. [Journal]. - [s.l.] : IEEE Transactions on Parallel and

Distributed Systems, 2009. - 5 : Vol. 20.

JPEO Joint Tactical Radio System Standard Device Packet Application Program Interface

[Book]. - [s.l.] : JPEO (Joint Program Executive Office), 2007.

Junejo I., Cao X. and Foroosh H. Autoconfiguration of a dynamic nonoverlapping camera

network. [Journal] // Transactions on Systems, Man, and Cybernetics.. - [s.l.] : IEEE, august

2007. - issue 4 : Vol. vol.37. - pp. 803-816.

Karypis G., Schloegel K. and Kumar V. ParMETIS: Parallel graph partitioning and sparse

matrix ordering library, version 3.1. Technical report [Report]. - [s.l.] : Dept. Computer Science,

University of Minnesota, 2003.

Keiser G. Optical fiber communications [Book]. - [s.l.] : McGraw-Hill, 2000.

Leinberger W. and Kumar V. Information Power Grid: The new frontier in parallel computing

[Journal]. - [s.l.] : IEEE Concurrency, 1999.

Lin Frank C. H. and Keller Robert M. The Gradient Model Load Balancing Method.

[Journal]. - [s.l.] : IEEE Press Piscataway, NJ, USA. - Issue 1 : Vol. IEEE Transactions on

Software Engineering archive. Volume 13.

www.manaraa.com

69

Lüling R. and Schmidt. O. HiPEC: High Performance Computing visualization system

supporting networked electronic commerce application [Conference] // EURO-PAR'98 Parallel

Processing. - Springer, LNCS 1470 : [s.n.], 1998.

Mathworks Matlab website [Online]. - 2010. - www.mathworks.com.

Mathworks Simulink [Online]. - 2010. - www.mathworks.com/products/simulink/.

McCarthy J. Dynamics of Software Development [Book]. - [s.l.] : Microsoft Press, 1995.

Meyers S. Effective C++, Second Edition [Book]. - [s.l.] : Addison Wesley Longman, Inc.,

1998.

Microsoft Inc. [Online] // Microsoft website.. - 2010. - http://www.microsoft.com.

Morris Ben The Symbian OS Architecture Sourcebook: Design and Evolution of a Mobile

Phone OS [Book]. - [s.l.] : John Wiley & Sons, Ltd, 2007.

Muñoz-Salinas R. [et al.] Automatic Tuning of a Fuzzy Visual System Using Evolutionary

Algorithms: Single-Objective Versus Multiobjective Approaches [Journal] // IEEE Transactions

on Fuzzy Systems. - April 2008. - No.2 : Vol. 16.

NASA NASA Advanced Supercomputing [Online]. - 2010. - http://www.nas.nasa.gov/.

National Instruments National Instruments [Online]. - www.ni.com.

Nguyen H. [et al.] A Case Study OF Context-Driven Application As An Example Of

Educational Project On Cell-Phone Platforms [Conference]. - San Antonio, TX : UTSA ESB

'2007, 2007.

Nurnberger, A. Klose and Andreas On the Properties of Prototype-Based Fuzzy Classifiers

[Journal]. - [s.l.] : IEEE Transactions of Systems, Man, and Cybernetics, August 2007. - number

4 : Vol. Volume 37 number 4..

Panchul A. [Online] // CEF website. - 2010. - www.panchul.us/cef.

Panchul A. [et al.] An imaging toolbox for smartphone applications [Conference]. - Orlando,

FL : Mobile Multimedia/Image Processing for Military and Security Applications, SPIE Defense

and Security Symposium, 17-21 April 2006.

Panchul A. and Akopian D. Development of educational packages for smartphones

[Conference]. - Pittsburgh, PA. : ASEE Conference, 2008.

Panchul A. and Akopian D. Educational Applications Development for Smartphones

[Conference]. - San Antonio, TX : UTSA ESB '2007 Conference, November 9, 2007.

Panchul A. and Akopian D. On porting computer applications into Symbian cell phone

platform [Conference]. - San Antonio, TX : IEEE Region 5 Conference., April 2006.

www.manaraa.com

70

Panchul A., Akopian D. and Chen C.L. Development of Symbian Smartphone Based Public

Vigilance System [Conference]. - Waikoloa, Hawaii. : ISIAC 2008, September-October 2008.

Panchul A., Akopian D. and Jamshidi M. On object-oriented implementation of soft

computing toolbox for CEF. [Conference] // World Automation Congress(WAC). - Kobe,

Japan : [s.n.], 2010.

Pelligrini F. PT-SCOTCH 5.1 user's guide [Report]. - [s.l.] : Research rep., LaBRI, 2008.

Purcell T. [et al.] Ray Tracing on Programmable Graphics Hardware [Journal]. - [s.l.] : ACM

Transactions on Graphics, 2002. - 3, pp 703-712 : Vol. 21.

R.C.Dorf R.H.Bishop Modern Control Systems [Book]. - Upper Saddle River, NJ : Pearson

Education, 2008.

RSoft, Inc. RSoft, Inc., Ossining, New York [Online]. - www.rsoftinc.com.

Sagiraju P. [et al.] Development of Software GPS+ Receiver Testbed" [Conference]. - San

Diego, CA : IEEE PLANS'2006 Conference, April 25-27 2006.

Schaumont P. [et al.] Cooperative Multithreading on Embedded Multiprocessor Architectures

Enbales Energy-scalable Design. [Conference] // DAC. - Anaheim, CA, USA : ACM, 2005.

SETI Project Search for Extra-Terrestrial Intelligence [Online]. - www.seti.org.

Shaout and McAuliffe P. Job scheduling using fuzzy load balancing in distributed system

[Journal] // Electronics Letters. - October 1st, 1998. - No.20 : Vol. 34. - pp. pp.1983-1985.

Shi W., MacGregor M. H. and and Gburzynski P. Load Balancing for Parallel Forwarding

[Journal] // IEEE/ACM Transactions on Networking. - August 2005. - No. 4 : Vol. 13. - pp. 790-

801.

SourceForge www.sourceforge.com [Online]. - 2010.

SPICE SPICE Overview. [Online]. - www.seas.upenn.edu/~jan/spice/spice.overview.html.

Stevens W.Richard UNIX network programming [Book]. - [s.l.] : Prentice Hall PTR, 1999.

Stroustrup B. The C++ Programming Language, Special Edition [Book]. - Reading,

Massachusetts : Addison Wesley Longman, Inc, 2000.

Symbian Symbian website [Online]. - 2009. - http://www.symbian.com.

Tsui James Bao-yen Fundamentals of global positioning system receivers: a software approach

[Book]. - [s.l.] : John Wiley & Sons, 2000.

Volz B. [et al.] DHC Load Balancing Algorithm [Report]. - [s.l.] : The Internet Society, 2001. -

RFC 3074.

www.manaraa.com

71

Wang J. [et al.] Intelligent Load Balancing Strategies for Complex Distributed Simulation

Applications [Conference] // IEEE Computer Society, International Conference on

Computational Intelligence and Security. - 2009. - pp. p.182-186.

Weighorst H., Hooper G. and Greenberg D Improved Computational Methods for Ray

Tracing [Journal]. - [s.l.] : ACM Transactions on Graphics, 1984. - 1, January : Vol. 3.

www.artis-software.com Artis Software Corp., Torino, Italy [Online].

www.bbv-software.com BBV Software, Enchede, The Netherlands [Online].

www.virtualphotonics.com Virtual Photonics, Inc. Berlin, Germany [Online].

Zoltan Zoltan library, toolkit for parallel applications, homepage [Online]. - 2010. - 2010. -

http://www.cs.sandia.gov/Zoltan.

www.manaraa.com

VITA

Aleksandr Panchul was born in Kiev, USSR, where he completed Physics and

Mathematics High School. In 1989 he moved to Moscow, Russian Federation. He received

M.Sc. in Computer Science and Applied Mathematics from Moscow Institute of Physics and

Technology in 1997, diploma with Honors. By that time he also participated in theoretical

physics research at Uppsala University, Sweden. During his Masters program he worked at

various software companies, writing operating system software and designing database systems.

In period from 1997 to 2005 he was employed by top-level telecommunications and financial

data market companies in New Jersey and New York City. In 2010 he worked with T1 line

interfaces and ISDN protocol.

Aleksandr also is a member of Eta Kappa Nu (HKN) Association, Kappa Upsilon

Chapter. In 2005 he started software project Computer Engineering Framework (CEF). In 2009

he was selected into Who's Who Among Students in American Universities and Colleges for

outstanding accomplishments and excellence as a student at the University of Texas.

His research interests include, among others, software engineering, distributed systems,

3D animation, artificial intelligence, microcontrollers and robotics, digital communications, CPU

emulators, and mobile applications.

